Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 965
Filtrar
1.
Eur J Med Chem ; 269: 116299, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38479167

RESUMO

Dendritic cells (DCs) play a pivotal role in controlling HIV-1 infections of CD4+ T cells. DC-SIGN, which is expressed on the surface of DCs, efficiently captures HIV-1 virions by binding to the highly mannosylated membrane protein, gp120, and then the DCs transport the virus to target T cells in lymphoid organs. This study explored the modification of T20, a peptide inhibitor of HIV-1 fusion, by conjugation of the N-terminus with varying sizes of oligomannose, which are DC-SIGN-specific carbohydrates, aiming to create dual-targeting HIV inhibitors. Mechanistic studies indicated the dual-target binding of the conjugates. Antiviral assays demonstrated that N-terminal mannosylation of T20 resulted in increased inhibition of the viral infection of TZM-b1 cells (EC50 = 0.3-0.8 vs. 1.4 nM). Pentamannosylated T20 (M5-T20) exhibited a stronger inhibitory effect on virus entry into DC-SIGN+ 293T cells compared with T20 (67% vs. 50% inhibition at 500 µM). M5-T20 displayed an extended half-life in rats relative to T20 (T1/2: 8.56 vs. 1.64 h, respectively). These conjugates represent a potential new treatment for HIV infections with improved antiviral activity and pharmacokinetics, and this strategy may prove useful in developing dual-target inhibitors for other pathogens that require DC-SIGN involvement for infection.


Assuntos
Inibidores da Fusão de HIV , Infecções por HIV , HIV-1 , Animais , Ratos , Enfuvirtida/farmacologia , Enfuvirtida/metabolismo , Inibidores da Fusão de HIV/farmacologia , Inibidores da Fusão de HIV/metabolismo , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo
2.
Langmuir ; 39(49): 17713-17722, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38031897

RESUMO

Enveloped viruses infect host cells via protein-mediated membrane fusion. However, insights into the microscopic rearrangement induced by the viral proteins and peptides have not yet emerged. Here, we report a new methodology to extract viral fusion peptide (FP)-mediated biomembrane dynamical nanodomain fusion parameter, λ, based on stimulated emission depletion microscopy coupled with fluorescence correlation spectroscopy. We also define another dynamical parameter membrane gradient, defined in terms of the ratio of average lipid diffusion coefficients across dynamic crossover length scales, ξ. Significantly, we observe that λ as well as these mobility gradients are larger in the stiffer liquid-ordered (Lo) phase compared to the liquid-disordered phase and are more effective at the smaller nanodomain interfaces, which are only present in the Lo phase. The results could possibly help to resolve a long-standing puzzle about the enhanced fusogenicity of FP in the Lo phase. Results obtained from the diffusion results have been correlated with the human immunodeficiency virus gp41 FP-induced membrane fusion.


Assuntos
Proteína gp41 do Envelope de HIV , Internalização do Vírus , Humanos , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/farmacologia , Fusão de Membrana , Peptídeos/farmacologia
3.
J Virol ; 97(9): e0059223, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37696048

RESUMO

The human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer mediates entry into host cells by binding receptors, CD4 and CCR5/CXCR4, and fusing the viral and cell membranes. In infected cells, cleavage of the gp160 Env precursor yields the mature Env trimer, with gp120 exterior and gp41 transmembrane Env subunits. Env cleavage stabilizes the State-1 conformation, which is the major target for broadly neutralizing antibodies, and decreases the spontaneous sampling of more open Env conformations that expose epitopes for poorly neutralizing antibodies. During HIV-1 entry into cells, CD4 binding drives the metastable Env from a pretriggered (State-1) conformation into more "open," lower-energy states. Here, we report that changes in two dissimilar elements of the HIV-1 Env trimer, namely particular gp120 glycans and the gp41 fusion peptide-proximal region (FPPR), can independently modulate the stability of State 1. Individual deletion of several gp120 glycans destabilized State 1, whereas removal of a V1 glycan resulted in phenotypes indicative of a more stable pretriggered Env conformation. Likewise, some alterations of the gp41 FPPR decreased the level of spontaneous shedding of gp120 from the Env trimer and stabilized the pretriggered State-1 Env conformation. State-1-stabilizing changes were additive and could suppress the phenotypes associated with State-1-destabilizing alterations in Env. Our results support a model in which multiple protein and carbohydrate elements of the HIV-1 Env trimer additively contribute to the stability of the pretriggered (State-1) conformation. The Env modifications identified in this study will assist efforts to characterize the structure and immunogenicity of the metastable State-1 conformation. IMPORTANCE The elicitation of antibodies that neutralize multiple strains of HIV-1 is an elusive goal that has frustrated the development of an effective vaccine. The pretriggered shape of the HIV-1 envelope glycoprotein (Env) spike on the virus surface is the major target for such broadly neutralizing antibodies. The "closed" pretriggered Env shape resists the binding of most antibodies but is unstable and often assumes "open" shapes that elicit ineffective antibodies. We identified particular changes in both the protein and the sugar components of the Env trimer that stabilize the pretriggered shape. Combinations of these changes were even more effective at stabilizing the pretriggered Env than the individual changes. Stabilizing changes in Env could counteract the effect of Env changes that destabilize the pretriggered shape. Locking Env in its pretriggered shape will assist efforts to understand the Env spike on the virus and to incorporate this shape into vaccines.


Assuntos
HIV-1 , Humanos , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Produtos do Gene env do Vírus da Imunodeficiência Humana , Glicoproteínas/genética , Anticorpos Anti-HIV , Proteína gp120 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/metabolismo , Peptídeos/metabolismo , Polissacarídeos , Conformação Proteica
4.
PLoS Pathog ; 19(8): e1011452, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37549185

RESUMO

Recent HIV-1 vaccine development has centered on "near native" soluble envelope glycoprotein (Env) trimers that are artificially stabilized laterally (between protomers) and apically (between gp120 and gp41). These mutations have been leveraged for use in membrane-expressed Env mRNA vaccines, although their effects in this context are unclear. To address this question, we used virus-like particle (VLP) produced in 293T cells. Uncleaved (UNC) trimers were laterally unstable upon gentle lysis from membranes. However, gp120/gp41 processing improved lateral stability. Due to inefficient gp120/gp41 processing, UNC is incorporated into VLPs. A linker between gp120 and gp41 neither improved trimer stability nor its antigenic profile. An artificially introduced enterokinase cleavage site allowed post-expression gp120/gp41 processing, concomitantly increasing trimer stability. Gp41 N-helix mutations I559P and NT1-5 imparted lateral trimer stability, but also reduced gp120/gp41 processing and/or impacted V2 apex and interface NAb binding. I559P consistently reduced recognition by HIV+ human plasmas, further supporting antigenic differences. Mutations in the gp120 bridging sheet failed to stabilize membrane trimers in a pre-fusion conformation, and also reduced gp120/gp41 processing and exposed non-neutralizing epitopes. Reduced glycan maturation and increased sequon skipping were common side effects of these mutations. In some cases, this may be due to increased rigidity which limits access to glycan processing enzymes. In contrast, viral gp120 did not show glycan skipping. A second, minor species of high mannose gp160 was unaffected by any mutations and instead bypasses normal folding and glycan maturation. Including the full gp41 cytoplasmic tail led to markedly reduced gp120/gp41 processing and greatly increased the proportion of high mannose gp160. Remarkably, monoclonal antibodies were unable to bind to this high mannose gp160 in native protein gels. Overall, our findings suggest caution in leveraging stabilizing mutations in nucleic acid-based immunogens to ensure they impart valuable membrane trimer phenotypes for vaccine use.


Assuntos
Proteína gp41 do Envelope de HIV , HIV-1 , Humanos , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/metabolismo , Glicosilação , Manose/metabolismo , Mutação , Glicoproteínas/metabolismo , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , Anticorpos Anti-HIV
5.
Commun Biol ; 6(1): 535, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202420

RESUMO

During virus entry, the pretriggered human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer initially transits into a default intermediate state (DIS) that remains structurally uncharacterized. Here, we present cryo-EM structures at near-atomic resolution of two cleaved full-length HIV-1 Env trimers purified from cell membranes in styrene-maleic acid lipid nanoparticles without antibodies or receptors. The cleaved Env trimers exhibited tighter subunit packing than uncleaved trimers. Cleaved and uncleaved Env trimers assumed remarkably consistent yet distinct asymmetric conformations, with one smaller and two larger opening angles. Breaking conformational symmetry is allosterically coupled with dynamic helical transformations of the gp41 N-terminal heptad repeat (HR1N) regions in two protomers and with trimer tilting in the membrane. The broken symmetry of the DIS potentially assists Env binding to two CD4 receptors-while resisting antibody binding-and promotes extension of the gp41 HR1 helical coiled-coil, which relocates the fusion peptide closer to the target cell membrane.


Assuntos
Proteína gp41 do Envelope de HIV , HIV-1 , Humanos , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/química , Conformação Proteica , Glicoproteínas , Estirenos
6.
J Virol ; 97(1): e0164722, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36541800

RESUMO

Broadly neutralizing antibodies (bNAbs) against the membrane-proximal external region (MPER) of the gp41 component of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) are characterized by long, hydrophobic, heavy chain complementarity-determining region 3s (HCDR3s) that interact with the MPER and some viral membrane lipids to achieve increased local concentrations. Here, we show that increasing the local concentration of MPER-directed bNAbs at the cell surface via binding to the high-affinity Fc receptor FcγRI potentiates their ability to prevent viral entry in a manner analogous to the previously reported observation wherein the lipid-binding activity of MPER bNAbs increases their concentration at the viral surface membrane. However, binding of MPER-directed bNAb 10E8 to FcγRI abolishes the neutralization synergy that is seen with the N-heptad repeat (NHR)-targeting antibody D5_AR and NHR-targeting small molecule enfuvirtide (T20), possibly due to decreased accessibility of the NHR in the FcγRI-10E8-MPER complex. Taken together, our results suggest that lipid-binding activity and FcγRI-mediated potentiation function in concert to improve the potency of MPER-directed bNAbs by increasing their local concentration near the site of viral fusion. Therefore, lipid binding may not be a strict requirement for potent neutralization by MPER-targeting bNAbs, as alternative methods can achieve similar increases in local concentrations while avoiding potential liabilities associated with immunologic host tolerance. IMPORTANCE The trimeric glycoprotein Env, the only viral protein expressed on the surface of HIV-1, is the target of broadly neutralizing antibodies and the focus of most vaccine development efforts. Broadly neutralizing antibodies targeting the membrane proximal external region (MPER) of Env show lipid-binding characteristics, and modulating this interaction affects neutralization. In this study, we tested the neutralization potencies of variants of the MPER-targeting antibody 10E8 with different viral-membrane-binding and host FcγRI-binding capabilities. Our results suggest that binding to both lipid and FcγRI improves the neutralization potency of MPER-directed antibodies by concentrating the antibodies at sites of viral fusion. As such, lipid binding may not be uniquely required for MPER-targeting broadly neutralizing antibodies, as alternative methods to increase local concentration can achieve similar improvements in potency.


Assuntos
Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV , Infecções por HIV , HIV-1 , Humanos , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/metabolismo , Infecções por HIV/imunologia , Lipídeos de Membrana , Receptores de IgG/metabolismo
7.
Biophys Chem ; 293: 106933, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36508984

RESUMO

There is complete attenuation of fusion and infection mediated by HIV gp160 with gp41 subunit with V2E mutation, and also V2E dominance with WT/V2E mixtures. V2E is at the N-terminus of the ∼25-residue fusion peptide (Fp) which likely binds the target membrane. In this study, large V2E attenuation and dominance were observed for vesicle fusion induced by FP_HM, a large gp41 ectodomain construct with Fp followed by hyperthermostable hairpin with N- and C-helices, and membrane-proximal external region (Mper). FP_HM is a trimer-of-hairpins, the final gp41 structure during fusion. Vesicle fusion and helicity were measured for FP_HM using trimers with different fractions (f's) of WT and V2E proteins. Reductions in FP_HM fusion and helicity vs. fV2E were quantitatively-similar to those for gp160-mediated fusion and infection. Global fitting of all V2E data supports 6 WT gp41 (2 trimers) required for fusion. These data are understood by a model in which the ∼25 kcal/mol free energy for initial membrane apposition is compensated by the thermostable hairpin between the Fp in target membrane and Mper/transmembrane domain in virus membrane. The data support a structural model for V2E dominance with a membrane-bound Fp with antiparallel ß sheet and interleaved strands from the two trimers. Relative to fV2E = 0, a longer Fp sheet is stabilized with small fV2E because of salt-bridge and/or hydrogen bonds between E2 on one strand and C-terminal Fp residues on adjacent strands, like R22. A longer Fp sheet results in shorter N- and C-helices, and larger separation during membrane apposition which hinders fusion.


Assuntos
Infecções por HIV , Fusão de Membrana , Humanos , Conformação Proteica em Folha beta , Sequência de Aminoácidos , Peptídeos/genética , Infecções por HIV/metabolismo , Mutação , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo
8.
J Virol ; 96(23): e0087622, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36354340

RESUMO

The HIV-1 envelope glycoprotein (Env) contains a long cytoplasmic tail harboring highly conserved motifs that direct Env trafficking and incorporation into virions and promote efficient virus spread. The cellular trafficking factor Rab11a family interacting protein 1C (FIP1C) has been implicated in the directed trafficking of Env to sites of viral assembly. In this study, we confirm that small interfering RNA (siRNA)-mediated depletion of FIP1C in HeLa cells modestly reduces Env incorporation into virions. To determine whether FIP1C is required for Env incorporation and HIV-1 replication in physiologically relevant cells, CRISPR-Cas9 technology was used to knock out the expression of this protein in several human T-cell lines-Jurkat E6.1, SupT1, and H9-and in primary human CD4+ T cells. FIP1C knockout caused modest reductions in Env incorporation in SupT1 cells but did not inhibit virus replication in SupT1 or Jurkat E6.1 T cells. In H9 cells, FIP1C knockout caused a cell density-dependent defect in virus replication. In primary CD4+ T cells, FIP1C knockout had no effect on HIV-1 replication. Furthermore, human T-cell leukemia virus type 1 (HTLV-1)-transformed cell lines that are permissive for HIV-1 replication do not express FIP1C. Mutation of an aromatic motif in the Env cytoplasmic tail (Y795W) implicated in FIP1C-mediated Env incorporation impaired virus replication independently of FIP1C expression in SupT1, Jurkat E6.1, H9, and primary T cells. Together, these results indicate that while FIP1C may contribute to HIV-1 Env incorporation in some contexts, additional and potentially redundant host factors are likely required for Env incorporation and virus dissemination in T cells. IMPORTANCE The incorporation of the HIV-1 envelope (Env) glycoproteins, gp120 and gp41, into virus particles is critical for virus infectivity. gp41 contains a long cytoplasmic tail that has been proposed to interact with host cell factors, including the trafficking factor Rab11a family interacting protein 1C (FIP1C). To investigate the role of FIP1C in relevant cell types-human T-cell lines and primary CD4+ T cells-we used CRISPR-Cas9 to knock out FIP1C expression and examined the effect on HIV-1 Env incorporation and virus replication. We observed that in two of the T-cell lines examined (Jurkat E6.1 and SupT1) and in primary CD4+ T cells, FIP1C knockout did not disrupt HIV-1 replication, whereas FIP1C knockout reduced Env expression and delayed replication in H9 cells. The results indicate that while FIP1C may contribute to Env incorporation in some cell lines, it is not an essential factor for efficient HIV-1 replication in primary CD4+ T cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Linfócitos T CD4-Positivos , HIV-1 , Proteínas de Membrana , Replicação Viral , Humanos , Linfócitos T CD4-Positivos/virologia , Células HeLa , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/fisiologia , Montagem de Vírus , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
9.
Commun Biol ; 5(1): 1265, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400835

RESUMO

Antibodies against the carboxy-terminal section of the membrane-proximal external region (C-MPER) of the HIV-1 envelope glycoprotein (Env) are considered as nearly pan-neutralizing. Development of vaccines capable of producing analogous broadly neutralizing antibodies requires deep understanding of the mechanism that underlies C-MPER recognition in membranes. Here, we use the archetypic 10E8 antibody and a variety of biophysical techniques including single-molecule approaches to study the molecular recognition of C-MPER in membrane mimetics. In contrast to the assumption that an interfacial MPER helix embodies the entire C-MPER epitope recognized by 10E8, our data indicate that transmembrane domain (TMD) residues contribute to binding affinity and specificity. Moreover, anchoring to membrane the helical C-MPER epitope through the TMD augments antibody binding affinity and relieves the effects exerted by the interfacial MPER helix on the mechanical stability of the lipid bilayer. These observations support that addition of TMD residues may result in more efficient and stable anti-MPER vaccines.


Assuntos
HIV-1 , HIV-1/química , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , Anticorpos Anti-HIV/química , Epitopos , Bicamadas Lipídicas/química
10.
Nat Commun ; 13(1): 6393, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302771

RESUMO

Vaccines targeting HIV-1's gp160 spike protein are stymied by high viral mutation rates and structural chicanery. gp160's membrane-proximal external region (MPER) is the target of naturally arising broadly neutralizing antibodies (bnAbs), yet MPER-based vaccines fail to generate bnAbs. Here, nanodisc-embedded spike protein was investigated by cryo-electron microscopy and molecular-dynamics simulations, revealing spontaneous ectodomain tilting that creates vulnerability for HIV-1. While each MPER protomer radiates centrally towards the three-fold axis contributing to a membrane-associated tripod structure that is occluded in the upright spike, tilting provides access to the opposing MPER. Structures of spike proteins with bound 4E10 bnAb Fabs reveal that the antibody binds exposed MPER, thereby altering MPER dynamics, modifying average ectodomain tilt, and imposing strain on the viral membrane and the spike's transmembrane segments, resulting in the abrogation of membrane fusion and informing future vaccine development.


Assuntos
Vacinas contra a AIDS , HIV-1 , HIV-1/genética , Proteína gp41 do Envelope de HIV/metabolismo , Anticorpos Anti-HIV , Anticorpos Amplamente Neutralizantes , Microscopia Crioeletrônica , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes
11.
J Phys Chem B ; 126(38): 7331-7342, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36121918

RESUMO

Broadly neutralizing antibodies against HIV-1 are rare with the 2F5 antibody being one of the most protective. Insertion of an antibody epitope into a stable and small protein scaffold overcomes many of the obstacles found to produce antibodies. However, the design leads to grafting of epitopes that may cause protein aggregation. Here, I investigated the 2F5 epitope grafted into the Top7 as the scaffold in which the resulting immunoreactive protein precipitates along the storage time, as opposed to its completely soluble biotinylated version. Molecular dynamics showed that biotinylation eliminates the intermediate state of the scaffold-epitope Top7-2F5 by switching a noncooperative to a cooperative folding. The aggregation propensity of the Top7-designed proteins is examined in light of thermodynamic cooperativity and kinetic traps along the decreasing depth of the intermediate ensemble in the free energy landscape. This protocol may predict stable and soluble scaffold-epitopes with the purpose of composing novel therapeutic and diagnostic platforms.


Assuntos
HIV-1 , Biotinilação , Anticorpos Amplamente Neutralizantes , Epitopos , Anticorpos Anti-HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Agregados Proteicos , Proteínas/metabolismo
12.
J Virol ; 96(17): e0063622, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35980207

RESUMO

Binding to the host cell receptors CD4 and CCR5/CXCR4 triggers conformational changes in the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer that promote virus entry. CD4 binding allows the gp120 exterior Env to bind CCR5/CXCR4 and induces a short-lived prehairpin intermediate conformation in the gp41 transmembrane Env. Small-molecule CD4-mimetic compounds (CD4mcs) bind within the conserved Phe-43 cavity of gp120, near the binding site for CD4. CD4mcs like BNM-III-170 inhibit HIV-1 infection by competing with CD4 and by prematurely activating Env, leading to irreversible inactivation. In cell culture, we selected and analyzed variants of the primary HIV-1AD8 strain resistant to BNM-III-170. Two changes (S375N and I424T) in gp120 residues that flank the Phe-43 cavity each conferred an ~5-fold resistance to BNM-III-170 with minimal fitness cost. A third change (E64G) in layer 1 of the gp120 inner domain resulted in ~100-fold resistance to BNM-III-170, ~2- to 3-fold resistance to soluble CD4-Ig, and a moderate decrease in viral fitness. The gp120 changes additively or synergistically contributed to BNM-III-170 resistance. The sensitivity of the Env variants to BNM-III-170 inhibition of virus entry correlated with their sensitivity to BNM-III-170-induced Env activation and shedding of gp120. Together, the S375N and I424T changes, but not the E64G change, conferred >100-fold and 33-fold resistance to BMS-806 and BMS-529 (temsavir), respectively, potent HIV-1 entry inhibitors that block Env conformational transitions. These studies identify pathways whereby HIV-1 can develop resistance to CD4mcs and conformational blockers, two classes of entry inhibitors that target the conserved gp120 Phe-43 cavity. IMPORTANCE CD4-mimetic compounds (CD4mcs) and conformational blockers like BMS-806 and BMS-529 (temsavir) are small-molecule inhibitors of human immunodeficiency virus (HIV-1) entry into host cells. Although CD4mcs and conformational blockers inhibit HIV-1 entry by different mechanisms, they both target a pocket on the viral envelope glycoprotein (Env) spike that is used for binding to the receptor CD4 and is highly conserved among HIV-1 strains. Our study identifies changes near this pocket that can confer various levels of resistance to the antiviral effects of a CD4mc and conformational blockers. We relate the antiviral potency of a CD4mc against this panel of HIV-1 variants to the ability of the CD4mc to activate changes in Env conformation and to induce the shedding of the gp120 exterior Env from the spike. These findings will guide efforts to improve the potency and breadth of small-molecule HIV-1 entry inhibitors.


Assuntos
Antígenos CD4 , Farmacorresistência Viral , Glicoproteínas , Guanidinas , Indenos , Mutação , Produtos do Gene env do Vírus da Imunodeficiência Humana , Sítios de Ligação/genética , Antígenos CD4/química , Antígenos CD4/metabolismo , Farmacorresistência Viral/genética , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Guanidinas/química , Guanidinas/farmacologia , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/química , Inibidores da Fusão de HIV/farmacologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/química , HIV-1/efeitos dos fármacos , HIV-1/metabolismo , Humanos , Indenos/química , Indenos/farmacologia , Conformação Proteica/efeitos dos fármacos , Receptores de HIV/química , Receptores de HIV/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
13.
Molecules ; 27(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35745059

RESUMO

Despite the enormous efforts made to develop other fusion inhibitors for HIV, the enfuvirtide (known as T20) peptide is the only approved HIV-1 inhibitory drug so far. Investigating the role of potential residues of the T20 peptide's conformational dynamics could help us to understand the role of potential residues of the T20 peptide. We investigated T20 peptide conformation and binding interactions with the HIV-1 receptor (i.e., gp41) using MD simulations and docking techniques, respectively. Although the mutation of E143 into alanine decreased the flexibility of the E143A mutant, the conformational compactness of the mutant was increased. This suggests a potential role of E143 in the T20 peptide's conformation. Interestingly, the free energy landscape showed a significant change in the wild-type T20 minimum, as the E143A mutant produced two observed minima. Finally, the docking results of T20 to the gp41 receptor showed a different binding interaction in comparison to the E143A mutant. This suggests that E143 residue can influence the binding interaction with the gp41 receptor. Overall, the E143 residue showed a significant role in conformation and binding to the HIV-1 receptor. These findings can be helpful in optimizing and developing HIV-1 inhibitor peptides.


Assuntos
Inibidores da Fusão de HIV , HIV-1 , Enfuvirtida/química , Enfuvirtida/farmacologia , Anticorpos Anti-HIV/metabolismo , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/farmacologia , HIV-1/genética , HIV-1/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/farmacologia , Peptídeos/genética , Peptídeos/metabolismo , Peptídeos/farmacologia
14.
J Phys Chem B ; 126(20): 3673-3684, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35580344

RESUMO

Membrane fusion is considered to be one of the crucial processes for the existence of eukaryotes and the entry of enveloped viruses into host cells. The fusion mechanism depends on the lipid composition of the membrane as well as the properties of fusion proteins or peptides. The gp41 fusion peptide from the human immunodeficiency virus (HIV) is known to catalyze membrane fusion by altering the physical properties of the membrane. Earlier, we demonstrated that a membrane containing 30 mol % phosphatidylethanolamine (PE) circumvents the classical stalk model because of its intrinsic negative curvature. In this work, we demonstrated how the gp41 fusion peptide influences the fusion mechanism of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dioleoyl-sn-glycero-3-phos-pho¬ethanolamine (DOPE) (70/30 mol %) membranes. We further evaluated the effect of the same peptide on the mechanism of fusion for membranes containing 30 mol % PE and a fatty acid with an intrinsic positive curvature (oleic acid (OA)). Our results show that gp41 switches the fusion mechanism from a nonclassical to a classical stalk model when membranes contain OA, but fails to do so for DOPC/DOPE membranes. This could be due to the extreme influence of the intrinsic negative curvature of PE, which is partially downregulated in the presence of OA.


Assuntos
Proteína gp41 do Envelope de HIV , Fusão de Membrana , Ácido Oleico , Fosfatidiletanolaminas , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , Humanos , Ácido Oleico/química , Ácido Oleico/metabolismo , Peptídeos/farmacologia , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo
15.
Adv Exp Med Biol ; 1366: 15-26, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412132

RESUMO

The development of peptide-based HIV entry inhibitors has made an important contribution to the stock of anti-HIV drugs. In particular, the peptide-based anti-HIV drugs enfuvirtide and albuvirtide were approved for clinical use by the U.S. FDA and CFDA in 2003 and 2018, respectively. Peptide-based HIV entry inhibitors exert antiviral activity by targeting the early stage of viral infection, i.e., binding of a viral surface protein to the receptor(s) on the host cell and the subsequent fusion between the viral and host cell membranes. Therefore, they are particularly useful for HIV-infected patients who have failed to respond to the highly active antiretroviral drugs (ARD) targeting the late stage of HIV replication, such as reverse transcriptase inhibitors and protease inhibitors. In this chapter, we will focus on the past, current, and future trends in research and development of peptide-based HIV entry inhibitors.


Assuntos
Fármacos Anti-HIV , Inibidores da Fusão de HIV , Infecções por HIV , HIV-1 , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Proteína gp41 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/farmacologia , Inibidores da Fusão de HIV/farmacologia , Inibidores da Fusão de HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , HIV-1/metabolismo , Humanos , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/uso terapêutico , Peptídeos/farmacologia , Peptídeos/uso terapêutico
16.
Adv Exp Med Biol ; 1366: 87-100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412136

RESUMO

The continued HIV/AIDS epidemic worldwide and the battle against emerging infectious diseases caused by coronaviruses underscore the need for the development of an ever-expanding repertoire of antiviral drugs. Entry inhibitors are of particular interest because of their potential to be used as therapeutic or prophylactic treatments for blocking viral invasion. HIV and coronaviruses utilize class I fusion proteins to facilitate their entry and membrane fusion. Discovery of a common hexameric coiled-coil fusion complex resulting from the packing of three C-terminal heptad repeat region from the fusion-mediating subunit of viral fusion proteins against trimeric coiled-coil made up by their N-terminal heptad repeat prompted the search for peptides mimicking the heptad repeat regions that could potentially inhibit viral entry. This has led to the development of effective peptides that are specific to the virus that is developed for. In this review, we focus on peptide-based entry dual inhibitors that block fusion process not only of HIV but also coronaviruses through interrupting their fusogenic six-helical bundle core and which hopefully will help to gain insight into the α-helical secondary structure- and coiled-coil superstructure-based strategies to design entry inhibitors with broad-spectrum antiviral activity against enveloped viruses with class I fusion proteins.


Assuntos
Antivirais , Infecções por Coronavirus , Coronavirus , Inibidores da Fusão de HIV , Infecções por HIV , Peptídeos , Sequência de Aminoácidos , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Proteína gp41 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/farmacologia , Inibidores da Fusão de HIV/farmacologia , Inibidores da Fusão de HIV/uso terapêutico , Humanos , Peptídeos/farmacologia , Estrutura Secundária de Proteína
17.
Commun Biol ; 5(1): 291, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361878

RESUMO

The early humoral immune response to acute HIV-1 infection is largely non-neutralizing. The principal target of these antibodies is the primary immunodominant region (PID) on the gp41 fusion protein. The PID is a highly conserved 15-residue region displayed on the surface of HIV-1 virions. In this study, we analyzed the humoral determinants of HIV-1 gp41 PID binding using biophysical, structural, and computational methods. In complex with a patient-derived near-germline antibody fragment, the PID motif adopts an elongated random coil, whereas the PID bound to affinity-matured Fab adopts a strand-turn-helix conformation. Molecular dynamics simulations showed that the PID is structurally plastic suggesting that the PID can form an ensemble of structural states recognized by various non-neutralizing antibodies, facilitating HIV-1 immunodominance observed in acute and chronic HIV-1 infections. An improved understanding of how the HIV-1 gp41 PID misdirects the early humoral response should guide the development of an effective HIV-1 vaccine.


Assuntos
HIV-1 , Anticorpos Anti-HIV/química , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/química , Humanos , Epitopos Imunodominantes , Conformação Proteica
18.
Eur J Med Chem ; 229: 114078, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34992041

RESUMO

Current therapeutic armamentarium for treatment of HIV-1 infection is based on the use of highly active antiretroviral therapy that, unfortunately, does not act as a curative remedy. Moreover, duration of the therapy often results in lack of compliance with the consequent emergence of multidrug resistance. Finally, drug toxicity issues also arise during treatments. In the attempt to achieve a curative effect, in addition to invest substantial resources in finding new anti-HIV-1 agents and in optimizing antiviral lead compounds and drugs currently available, additional efforts should be done to deplete viral reservoir located within host CD4+ T cells. Gp120 binders represent a class of compounds able to affect the interactions between viral envelope proteins and host CD4, thus avoiding virus-to-cell attachment and fusion, and the consequent viral entry into host cells. This review summarizes the efforts done in the last five years to design new gp120 binders, that finally culminated in the approval of fostemsavir as an anti-HIV-1 drug.


Assuntos
Fármacos Anti-HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Oxalatos/química , Fármacos Anti-HIV/farmacologia , Terapia Antirretroviral de Alta Atividade , Proteína gp41 do Envelope de HIV/metabolismo , Humanos , Organofosfatos/farmacologia , Oxalatos/farmacologia , Piperazinas/farmacologia , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Internalização do Vírus
19.
Biotechnol J ; 17(4): e2100266, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35075794

RESUMO

The production of biopharmaceuticals in engineered plant-based systems is a promising technology that has proven its suitability for the production of various recombinant glyco-proteins that are currently undergoing clinical trials. However, compared to mammalian cell lines, the productivity of plant-based systems still requires further improvement. A major obstacle is the proteolytic degradation of recombinant target proteins by endogenous plant proteases mainly from the subtilisin family of serine proteases. In the present study, the authors screened for putative small molecule inhibitors for subtilases that are secreted from tobacco BY-2 suspension cells using an in silico approach. The effectiveness of the substances identified in this screen was subsequently tested in degradation assays using the human broadly-neutralizing anti-HIV monoclonal antibody 2F5 (mAb2F5) and spent BY-2 culture medium as a model system. Among 16 putative inhibitors identified by in silico studies, three naphthalene sulfonic acid derivatives showed inhibitory activity in in vitro degradation assays and are similar to or even more effective than phenylmethylsulfonyl fluoride (PMSF), a classical inhibitor of serine proteases, which served as positive control.


Assuntos
Anticorpos Anti-HIV , HIV-1 , Animais , Anticorpos Anti-HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , Humanos , Mamíferos , Proteínas Recombinantes/metabolismo , Serina Proteases/metabolismo , /metabolismo
20.
J Med Chem ; 65(4): 2809-2819, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33929200

RESUMO

Hexameric structure formation through packing of three C-terminal helices and an N-terminal trimeric coiled-coil core has been proposed as a general mechanism of class I enveloped virus entry. In this process, the C-terminal helical repeat (HR2) region of viral membrane fusion proteins becomes transiently exposed and accessible to N-terminal helical repeat (HR1) trimer-based fusion inhibitors. Herein, we describe a mimetic of the HIV-1 gp41 HR1 trimer, N3G, as a promising therapeutic against HIV-1 infection. Surprisingly, we found that in addition to protection against HIV-1 infection, N3G was also highly effective in inhibiting infection of human ß-coronaviruses, including MERS-CoV, HCoV-OC43, and SARS-CoV-2, possibly by binding the HR2 region in the spike protein of ß-coronaviruses to block their hexameric structure formation. These studies demonstrate the potential utility of anti-HIV-1 HR1 peptides in inhibiting human ß-coronavirus infection. Moreover, this strategy could be extended to the design of broad-spectrum antivirals based on the supercoiling structure of peptides.


Assuntos
Antivirais/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Desenho de Fármacos , Proteína gp41 do Envelope de HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Peptídeos/farmacologia , Antivirais/síntese química , Antivirais/química , Linhagem Celular , Infecções por Coronavirus/metabolismo , Relação Dose-Resposta a Droga , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Peptídeos/síntese química , Peptídeos/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...